2k^2-4K-23=0

Simple and best practice solution for 2k^2-4K-23=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2k^2-4K-23=0 equation:



2k^2-4-23=0
We add all the numbers together, and all the variables
2k^2-27=0
a = 2; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·2·(-27)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*2}=\frac{0-6\sqrt{6}}{4} =-\frac{6\sqrt{6}}{4} =-\frac{3\sqrt{6}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*2}=\frac{0+6\sqrt{6}}{4} =\frac{6\sqrt{6}}{4} =\frac{3\sqrt{6}}{2} $

See similar equations:

| a*4−5/6=-1/2 | | 2y^2-14y+17=0 | | 3(q-9)-5=13 | | 4=10+6n | | 7w+4=-17 | | -2(x+5)^2-4=0 | | 78-6b=8-2b | | 71+5=3w-15 | | 4=v-8/2 | | 4y^2-15y+17=0 | | 7w+5=3w-17 | | 4=v-82 | | 5n^2+9n-3=0 | | -(w-4)=1 | | (x-80)+20=90 | | 41=-v-2+11 | | 62=8-9v | | 2x+8=-5x-6 | | 6=2(s-5) | | 5/6=z/24 | | 62=-9v | | 5(x-9)=2x+5 | | 250=10n | | 3y-4(3y+2)=-2(2y-3)-3y | | 7x-36=3x+32 | | 2x=8+3 | | 40+3x=1 | | 89=5y+14 | | 2z^2+9z-18=0 | | -12-x=2x+3 | | 3-28=34-6x | | 42=11x-8-6x |

Equations solver categories